基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,许多机器学习的方法被广泛应用于网络流量分类识别的问题中,结合有监督学习与无监督学习的特点,提出一种基于半监督学习的流量分类识别方法,该方法改进K均值聚类算法中初始簇中心的选取,通过基于密度因子的相似性函数来满足聚类数据的全局一致性要求以获取更适合的初始簇中心,并通过最大似然估计方法标记聚类结果实现与相关应用类型或协议的对应匹配过程,实验结果表明,该算法提升了网络流量分类识别结果的准确性和分类识别效率,能够有效满足流量分类识别的应用需求.
推荐文章
网络流量分类与应用识别的研究
流量分类
应用识别
机器学习
无监督聚类
有监督分类
基于GA-CFS和AdaBoost算法的网络流量分类
流量分类
相关性特征选择
适应度函数
AdaBoost算法
弱分类器
权重
基于有督导机器学习的网络流量识别系统
有督导机器学习
网络流量识别
LSSVM
协同量子粒子群优化算法
基于快速SVM的大规模网络流量分类方法
支持向量机
大规模流量分类
比特压缩
权重SVM
分类器
分类准确率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于半监督的网络流量分类识别算法
来源期刊 电子测量与仪器学报 学科 工学
关键词 网络流量 半监督学习 分类识别 聚类中心点
年,卷(期) 2014,(4) 所属期刊栏目 学术论文
研究方向 页码范围 381-386
页数 6页 分类号 TP391
字数 4687字 语种 中文
DOI 10.13382/j.jemi.2014.04.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈雷霆 电子科技大学计算机科学与工程学院 88 811 15.0 22.0
2 董仕 东南大学计算机科学与工程学院 4 43 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (774)
参考文献  (7)
节点文献
引证文献  (18)
同被引文献  (66)
二级引证文献  (39)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(6)
  • 引证文献(2)
  • 二级引证文献(4)
2016(4)
  • 引证文献(2)
  • 二级引证文献(2)
2017(8)
  • 引证文献(4)
  • 二级引证文献(4)
2018(13)
  • 引证文献(3)
  • 二级引证文献(10)
2019(21)
  • 引证文献(5)
  • 二级引证文献(16)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
网络流量
半监督学习
分类识别
聚类中心点
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导