基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Interaction between soil pedogenesis, subsurface water dynamics, climate, vegetation and human ingenuity in a desert environment has been found to result in a unique ecohydrological system with an essentially three dimensional sedimentation structure in the bed of a recharge dam in Oman. A 3-D array of silt blocks sandwiched by dry sand-filled horizontal and vertical fractures was studied in pot experiments as a model of a natural prototype. Pots are filled with a homogenous sand-silt mixture(control) or artificially structured(smart design, SD) soil substrates. Rhodes grass and ivy(Ipomea, Convolvulaceae) were grown in the pots during the hottest season in Oman. Soil moisture content(SMC) was measured at different depths over a period of 20 days without irrigation. SD preserved the SMC of the root zone for both ivy and grass(SMC of around 25%–30% compared to <10% for control, 3 days after the last irrigation). Even after 20 days, SMC was around 18% in the SD and 7% in the control. This, similar to the case of a natural prototype, is attributed to the higher upward capillary movement of water in control pots and intensive evaporation. The capillary barrier of sand sheaths causes discontinuity in moisture migration from the micro-pores in the silt blocks to sand pores. The blocks serve as capillarity-locked water buffers, which are depleted at a slow rate by transpiration rather than evaporation from the soil surface. This creates a unique ecosystem with a dramatic difference in vegetation between SD-pots and control pots. Consequently, the Noy-Meir edaphic factor, conceptualizing the ecological impact of 1-D vertical heterogeneity of desert soils, should be generalized to incorporate 3-D soil heterogeneity patterns. This agro-engineering control of the soil substrate and soil moisture distribution and dynamics(SMDaD) can be widely used by desert farmers as a cheap technique, with significant savings of irrigation water.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Soil substrate as a cascade of capillary barriers for conserving water in a desert environment: lessons learned from arid nature
来源期刊 干旱区科学(英文版) 学科 农学
关键词 soil capillary barrier infiltration soil heterogeneity ecohydrology hydropedology plant root soil moisture content
年,卷(期) 2014,(6) 所属期刊栏目
研究方向 页码范围 690-703
页数 14页 分类号 S152
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
soil capillary barrier
infiltration
soil heterogeneity
ecohydrology
hydropedology
plant root
soil moisture content
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
干旱区科学
双月刊
1674-6767
65-1278/K
新疆乌鲁木齐市北京南路818号
eng
出版文献量(篇)
793
总下载数(次)
0
论文1v1指导