基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
子空间聚类是一种将搜索局部化在相关维上进行的聚类算法,它能有效地克服数据因维度过高引起的在全空间上聚类的困难。针对高维分类型数据,本文提出了一种自底向上的子空间层次聚类算法,该算法在全局范围内建立一个最相似线性表用来记录每个簇类与其最相似的簇类的相似度,在聚类过程中,选取最相似的簇类合并,并通过维护此线性表产生最相似的簇类。此算法在基于信息熵的意义上能够较准确地搜索簇类的子空间。通过Zoo和Soybean两个典型的分类型数据实验发现,相对于其它相关聚类算法,该算法在聚类的准确率和稳定性方面表现出较高的优越性。
推荐文章
一种鲁棒的子空间聚类算法
子空间聚类
鲁棒性
权参数
最优化
一种不确定数据流子空间聚类算法
不确定数据流
滑动窗口
聚类
子空间
缓冲区
离群点
基于方差权重矩阵模型的高维数据子空间聚类算法
子空间聚类
方差权重矩阵
模糊C-均值聚类
高维数据
基于决策树的网络高维数据软子空间聚类方法研究
聚类方法
软子空间
高维数据
决策树
信息增益
仿真分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种高维分类型数据的子空间聚类算法
来源期刊 汕头大学学报(自然科学版) 学科 工学
关键词 子空间 聚类 高维 信息熵
年,卷(期) 2014,(3) 所属期刊栏目
研究方向 页码范围 51-59
页数 9页 分类号 TP391.4
字数 6308字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张磊 汕头大学工学院 7 24 3.0 4.0
2 孙浩军 汕头大学工学院 16 69 5.0 7.0
3 李惊涛 汕头大学工学院 2 2 1.0 1.0
4 张崇锐 汕头大学工学院 2 2 1.0 1.0
5 肖婷 汕头大学工学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (14)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
子空间
聚类
高维
信息熵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汕头大学学报(自然科学版)
季刊
1001-4217
44-1059/N
16开
广东省汕头市大学路243号
46-17
1986
chi
出版文献量(篇)
992
总下载数(次)
3
总被引数(次)
3796
论文1v1指导