基于TIGGE(THORPEX Interactive Grand Global Ensemble,全球交互式大集合)资料中欧洲中期天气预报中心(European Centre for Medium-Range Weather,ECMWF)、日本气象厅(Japan Meteorological Agency,JMA)、美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)和英国气象局(United Kingdom Met Office,UKMO)4个中心的北半球地面2m气温集合平均预报资料,利用插值技术与回归分析,并引入了消除偏差集合平均(bias-removed ensemble mean,BREM)和多模式超级集合(superensemble,SUP)方法进行统计降尺度预报研究.结果表明,在2007年夏季3个月中,4个单中心的降尺度预报明显地改善了预报效果.引入SUP和BREM两种集成预报方法后,预报误差得到进一步减小.对比综合表现最好的单中心ECMWF的预报,1~7d的降尺度预报误差改进率均达20%以上.研究还发现,引入SUP方法的降尺度预报效果优于引入BREM方法的降尺度预报,利用双线性插值方法在上述两方案中的预报效果优于其他3种插值方法.