基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高超短期负荷预测精度,特别是负荷曲线在拐点处的精度,在模糊聚类分析的基础上提出了一种选取局部相似日的改进模型.通过该模型选取局部相似日,并结合RBF网络提出一种新的预测超短期负荷方法.采用该方法建立2个预测模型,分别用于预测下个时刻和下一个小时段的数据.将该方法与灰色关联分析预测方法进行比较,发现该方法在预测精度上具有显著优势,证明新的预测超短期负荷方法有较高的可靠性与有效性.仿真结果表明,新的预测超短期负荷方法在工作日或休息日负荷曲线拐点处的预测上,均具有较高精度.
推荐文章
基于混沌模糊神经网络方法的短期负荷预测
短期负荷
混沌算法
模糊神经网络
预测模型
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
一种改进组合神经网络的超短期风速预测方法研究
风力发电
超短期风速预测
BP神经网络
长短期记忆(LSTM)神经网络
差分进化(DE)算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部相似与神经网络的超短期负荷预测方法
来源期刊 广西电力 学科 工学
关键词 超短期负荷预测 模糊聚类分析 灰色关联分析 RBF网络
年,卷(期) 2014,(3) 所属期刊栏目 学术应用研究
研究方向 页码范围 11-14,26
页数 5页 分类号 TM715
字数 3161字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐鹏 8 12 1.0 3.0
2 孙炜星 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (100)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(11)
  • 参考文献(2)
  • 二级参考文献(9)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(8)
  • 参考文献(1)
  • 二级参考文献(7)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超短期负荷预测
模糊聚类分析
灰色关联分析
RBF网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西电力
双月刊
1671-8380
45-1307/TK
大16开
广西南宁市民主路6-2号
1978
chi
出版文献量(篇)
2939
总下载数(次)
6
总被引数(次)
8374
论文1v1指导