基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The logistic normal distribution has recently been adapted via the transformation of multivariate Gaussian variables to model the topical distribution of documents in the presence of correlations among topics. In this paper, we propose a probit normal alternative approach to modelling correlated topical structures. Our use of the probit model in the context of topic discovery is novel, as many authors have so far concentrated solely of the logistic model partly due to the formidable inefficiency of the multinomial probit model even in the case of very small topical spaces. We herein circumvent the inefficiency of multinomial probit estimation by using an adaptation of the diagonal orthant multinomial probit in the topic models context, resulting in the ability of our topic modeling scheme to handle corpuses with a large number of latent topics. An additional and very important benefit of our method lies in the fact that unlike with the logistic normal model whose non-conjugacy leads to the need for sophisticated sampling schemes, our approach exploits the natural conjugacy inherent in the auxiliary formulation of the probit model to achieve greater simplicity. The application of our proposed scheme to a well-known Associated Press corpus not only helps discover a large number of meaningful topics but also reveals the capturing of compellingly intuitive correlations among certain topics. Besides, our proposed approach lends itself to even further scalability thanks to various existing high performance algorithms and architectures capable of handling millions of documents.
推荐文章
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
一种基于Normal矩阵的时间序列聚类方法
时间序列聚类
社团结构
复杂网络
Normal矩阵
相似度
基于M-H抽样算法的贝叶斯Probit分位回归模型研究
仿真
Probit模型
贝叶斯方法
分位回归
离散选择
一种基于Normal基椭圆曲线密码芯片的设计
椭圆曲线
normal基
数字签名
认证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Probit Normal Correlated Topic Model
来源期刊 统计学期刊(英文) 学科 医学
关键词 TOPIC Model Bayesian Gibbs SAMPLER CUMULATIVE Distribution Function PROBIT LOGIT DIAGONAL Orthant Efficient Sampling Auxiliary Variable Correlation Structure TOPIC Vocabulary Conjugate Dirichlet Gaussian
年,卷(期) 2014,(11) 所属期刊栏目
研究方向 页码范围 879-888
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TOPIC
Model
Bayesian
Gibbs
SAMPLER
CUMULATIVE
Distribution
Function
PROBIT
LOGIT
DIAGONAL
Orthant
Efficient
Sampling
Auxiliary
Variable
Correlation
Structure
TOPIC
Vocabulary
Conjugate
Dirichlet
Gaussian
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导