基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
考虑具有正负系数的高阶微分方程,利用Banach压缩映像原理得到了非振动解存在的新的充分条件.
推荐文章
具有正负系数的非齐次中立型微分方程解的渐近性
正负系数
非齐次
中立型微分方程
渐近性
具有正负系数的中立型微分方程解的渐近性
正负系数
渐近性
中立型微分方程
高阶中立型微分方程非振动解的存在性
中立型微分方程
Banach压缩映像原理
非振动解
某类高阶微分方程正规亚纯解的复振荡
亚纯解
线性微分方程
正规性
超级
二级不同零点收敛指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 具有正负系数的高阶微分方程非振动解的存在性
来源期刊 系统科学与数学 学科
关键词 高阶 微分方程 正负系数 非振动解 Banach压缩映像原理
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 495-503
页数 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张建文 太原理工大学应用力学与生物医学工程研究所 68 232 7.0 13.0
2 燕居让 山西大学数学科学学院 48 399 11.0 18.0
3 刘有军 太原理工大学应用力学与生物医学工程研究所 21 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (1)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
高阶
微分方程
正负系数
非振动解
Banach压缩映像原理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统科学与数学
月刊
1000-0577
11-2019/O1
16开
北京市中关村东路55号中科院数学与系统科学研究院
2-563
1981
chi
出版文献量(篇)
2941
总下载数(次)
4
论文1v1指导