基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对支持向量机核函数和控制参数选取难度较大的问题,提出了一种主动划分参数区间的双尺度径向基核支持向量机,并用并行定向变异混合粒子群优化算法选取其控制参数。试验分析了利用标准数据集经多次独立重复试验得到的均值等统计量,验证、测试了上述支持向量机模型,同时考虑了类间数据不平衡的影响。结果表明,双尺度径向基核函数的性能在多数情况下优于单径向基核函数,并行定向变异的混合粒子群优化算法优于标准粒子群优化算法,能够有效抑制早熟收敛,有利于搜索到更优的支持向量机控制参数。
推荐文章
粒子群优化的隐空间光滑支持向量机算法
隐空间
支持向量机
熵函数
粒子群优化
共轭梯度法
基于粒子群算法优化支持向量机的模拟电路诊断
故障诊断
模拟电路
粒子群优化
多小波变换
支持向量机
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
使用粒子群算法进行特征选择及对支持向量机参数的优化
支持向量机
参数优化
粒子群算法
2进制编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子群算法优化双核支持向量机及应用
来源期刊 振动、测试与诊断 学科 工学
关键词 支持向量机 双尺度核函数 粒子群优化算法 参数优化 故障诊断
年,卷(期) 2014,(3) 所属期刊栏目
研究方向 页码范围 565-569
页数 5页 分类号 TH165.3
字数 4151字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 聂立新 东北大学机械工程与自动化学院 21 76 6.0 8.0
3 赵波 河南理工大学机械与动力工程学院 186 1176 16.0 23.0
4 张天侠 东北大学机械工程与自动化学院 50 694 15.0 24.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (143)
参考文献  (5)
节点文献
引证文献  (8)
同被引文献  (45)
二级引证文献  (52)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(12)
  • 参考文献(0)
  • 二级参考文献(12)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(6)
  • 引证文献(2)
  • 二级引证文献(4)
2018(13)
  • 引证文献(0)
  • 二级引证文献(13)
2019(26)
  • 引证文献(3)
  • 二级引证文献(23)
2020(11)
  • 引证文献(0)
  • 二级引证文献(11)
研究主题发展历程
节点文献
支持向量机
双尺度核函数
粒子群优化算法
参数优化
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
振动、测试与诊断
双月刊
1004-6801
32-1361/V
南京市御道街29号
chi
出版文献量(篇)
2937
总下载数(次)
3
总被引数(次)
26426
论文1v1指导