基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
灰色预测模型被广泛运用于电力负荷预测中,取得了较好的效果,但是灰色预测模型在实际应用中的缺点和局限性导致其预测精度有待提高,存在改进的必要。本文对于灰色预测模型的改进,分别从优化初值和改进模型等方面进行,从而提高普通灰色GM (1,1)模型的预测精度。对初值的处理可以削弱异常值的影响,强化趋势,从而避免由于初值选择不当而造成预测误差。本文中对模型的改进主要通过建立等维新息预测模型、灰色粒子群组合预测模型和灰色BP神经网络组合预测模型来实现。通过这些对灰色预测模型的修正和改进,进一步提高了灰色预测模型的适用性,最大限度地提高了灰色GM(1,1)模型的预测精度。
推荐文章
基于改进BP人工神经网络的电力负荷预测
神经网络
短期电力负荷预测
动量项
同类型日思想
模糊映射
基于改进BP神经网络的中央空调冷负荷预测研究
负荷预测
BP神经网络
粒子群算法
误差反馈
克隆选择粒子群优化BP神经网络电力需求预测
BP神经网络
克隆选择算法
粒子群优化
电力需求
改进BP神经网络的城区中长期电力负荷预测
模拟退火
BP神经网络
电力预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群算法和BP神经网络改进的灰色电力负荷预测研究
来源期刊 国网技术学院学报 学科 工学
关键词 灰色预测模型 灰色粒子群组合预测模型 灰色BP神经网络组合预测模型
年,卷(期) 2014,(5) 所属期刊栏目
研究方向 页码范围 6-11
页数 6页 分类号 TM715
字数 3785字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄元生 华北电力大学经济管理学院 84 487 13.0 18.0
2 贾春燕 华北电力大学经济管理学院 4 17 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (78)
参考文献  (7)
节点文献
引证文献  (11)
同被引文献  (64)
二级引证文献  (30)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(2)
  • 二级参考文献(6)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(5)
  • 引证文献(1)
  • 二级引证文献(4)
2018(10)
  • 引证文献(4)
  • 二级引证文献(6)
2019(19)
  • 引证文献(2)
  • 二级引证文献(17)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
灰色预测模型
灰色粒子群组合预测模型
灰色BP神经网络组合预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国网技术学院学报
双月刊
2095-6614
37-1496/TK
大16开
山东省济南市二环南路500号
1998
chi
出版文献量(篇)
2542
总下载数(次)
11
总被引数(次)
4279
论文1v1指导