基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对新浪、腾讯等微博平台出现大量广告的问题,提出一个微博广告过滤模型。通过对数据的预处理,将采集到的微博原始数据转换成干净且计算机易处理的数据。在预处理阶段,根据微博文本的特点,对停用词表进行改进,以提高查准率,然后基于支持向量机构建一个训练分类器对数据进行训练,经过不断的学习和反馈,取得较好的分类效果。实验结果表明,该模型进行广告过滤时准确率超过90%,效果优于基于关键字的方法。
推荐文章
论微博广告的发展研究
微博
广告
效益
创新
Web文本内容过滤方法的研究
文本内容过滤
文本向量
关键词匹配
关键词权重
新浪健康微博的文本分析
新浪微博
健康传播
文本分析
基于发文内容的微博用户兴趣挖掘方法研究
微博
发文内容
兴趣挖掘
主题短语模型
知识库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于文本内容分析的微博广告过滤模型研究
来源期刊 计算机工程 学科 工学
关键词 微博 文本处理 向量空间模型 支持向量机 文本分类 广告过滤
年,卷(期) 2014,(5) 所属期刊栏目 移动社交专题
研究方向 页码范围 17-20
页数 4页 分类号 TP391
字数 3457字 语种 中文
DOI 10.3969/j.issn.1000-3428.2014.05.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高俊波 上海海事大学信息工程学院 16 104 6.0 9.0
2 梅波 上海海事大学信息工程学院 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (1905)
参考文献  (10)
节点文献
引证文献  (8)
同被引文献  (13)
二级引证文献  (4)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
微博
文本处理
向量空间模型
支持向量机
文本分类
广告过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导