基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
查询扩展是解决查询词与相关文档中的词不匹配而导致检索效率低下问题的关键技术之一。提出了基于层次依赖的Markov网络信息检索扩展模型。该模型综合考虑了候选词与查询词的层次距离、词间相关性、词节点的出度和路径等因素,通过层次依赖关系对候选词进行重新加权,选择与查询最为相关的候选词应用于信息检索扩展模型,有利于挖掘出更多潜在的、深层次依赖关系的查询候选词。在5个标准数据集上进行了实验,结果表明基于层次依赖的Markov网络信息检索扩展模型与未进行查询扩展的BM25模型相比,在3-avg和11-avg上分别提高了5%~41%和5%~70%不等,与基于直接相关的Markov网络信息检索扩展模型相比,该模型在总体检索效率上表现更优。
推荐文章
基于PageRank的Markov网络信息检索扩展模型
查询扩展
Markov网络
PageRank算法
信息检索
基于词汇树层次语义模型的图像检索算法
词汇树
语义主题信息
层次语义模型
语义映射
图像检索
基于贝叶斯网络模型的信息检索
贝叶斯网络模型
信息检索
关联规则发现
基于语义Web的智能信息检索模型
信息检索
本体
Lucene
查询扩展
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于层次依赖的Markov网络信息检索扩展模型
来源期刊 计算机科学与探索 学科 工学
关键词 层次依赖 Markov网络 查询扩展 信息检索
年,卷(期) 2014,(12) 所属期刊栏目 网络与信息安全
研究方向 页码范围 1485-1493
页数 9页 分类号 TP391
字数 8080字 语种 中文
DOI 10.3778/j.issn.1673-9418.1409009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万常选 江西财经大学信息管理学院 85 1044 18.0 28.0
2 王明文 江西师范大学计算机信息工程学院 115 1470 19.0 34.0
3 甘丽新 江西财经大学信息管理学院 18 171 7.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (184)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (5)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(9)
  • 参考文献(3)
  • 二级参考文献(6)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
层次依赖
Markov网络
查询扩展
信息检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导