基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
风电的波动性、间歇性和随机性导致风电功率预测时间较长、误差较大;为提高预测精度,缩短预测时间,采用粒子群算法(PSO)对最小二乘支持向量机(LS-SVM)算法进行参数寻优,进而建立优化预测模型进行仿真;结果表明:优化的模型比RBF和LS-SVM具有更高的预测精度.
推荐文章
基于LS-SVM和核密度估计的概率性风电功率预测
风电功率预测
概率性预测
LS-SVM
核密度估计
自适应变异粒子群优化BP的短期风电功率预测模型
短期风电预测
互信息
自适应惯性权重系数
变异因子
反向传播神经网络
基于PSO滚动优化的LS-SVM预测控制
非线性模型预测控制
非线性建模
最小二乘支持向量机
粒子群算法
基于改进粒子群优化算法的短期风电功率预测
支持向量机
风电功率预测
改进粒子群优化算法
精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化的LS-SVM短期风电功率预测研究
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 风电功率预测 LS-SVM 粒子群优化
年,卷(期) 2014,(11) 所属期刊栏目
研究方向 页码范围 40-44
页数 5页 分类号 TM614
字数 2589字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐静 巢湖学院电子工程与电气自动化学院 5 3 1.0 1.0
2 王静 巢湖学院电子工程与电气自动化学院 11 10 3.0 3.0
3 孙仙 3 3 1.0 1.0
4 林森 2 10 2.0 2.0
5 张羽 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (10)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (27)
二级引证文献  (3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
风电功率预测
LS-SVM
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导