原文服务方: 计算机测量与控制       
摘要:
基于混沌PSO算法优化最小二乘支持向量机实现航空发动机磨损状态监测;通过小波包分解消除润滑油光谱数据的噪声,获取LS - SVM的训练与测试样本;针对最小二乘支持向量机解决大规模数据样本回归问题时所出现的训练时间长、收敛速度慢等缺点,提出了混沌PSO算法优化LS - SVM的模型参数;该方法不仅克服了传统PSO算法早熟、容易陷入局部最小值等缺点,同时显著提高了最小二乘支持向量机的预测能力;最后,将一般LS - SVM和GM(1,1)模型的预测结果与文中预测结果进行对比,该方法构建的模型对测试样本产生的预测误差仪为0.0441,验证了该方法在预测精度上具有明显优势.
推荐文章
基于粒子群优化LS-SVM的车刀磨损量识别技术研究
刀具状态监测
小波包分析
粒子群优化
最小二乘支持向量机
基于PSO滚动优化的LS-SVM预测控制
非线性模型预测控制
非线性建模
最小二乘支持向量机
粒子群算法
粒子群优化算法求解航空发动机模型的应用
粒子群优化算法
航空发动机
数学模型
基于粒子群优化算法的 LS-SVM的 GPS 高程拟合
粒子群优化算法
LS-SVM
BP 神经网络
二次曲面拟合法
高程拟合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混沌粒子群优化LS-SVM的发动机磨员态监测研究
来源期刊 计算机测量与控制 学科
关键词 最小二乘支持向量机 混沌粒子群算法 磨损 状态监控
年,卷(期) 2011,(8) 所属期刊栏目 自动化测试
研究方向 页码范围 1853-1856
页数 分类号 TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨军锋 空军工程大学工程学院 19 101 7.0 9.0
2 邓森 空军工程大学工程学院 16 136 8.0 10.0
3 杨朴 陆军航空兵学院飞行理论系 6 26 3.0 5.0
4 陈冰 空军工程大学工程学院 4 26 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (54)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (25)
二级引证文献  (27)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(13)
  • 参考文献(2)
  • 二级参考文献(11)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(5)
  • 引证文献(2)
  • 二级引证文献(3)
2014(7)
  • 引证文献(1)
  • 二级引证文献(6)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(6)
  • 引证文献(1)
  • 二级引证文献(5)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
最小二乘支持向量机
混沌粒子群算法
磨损
状态监控
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导