作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
朴素贝叶斯算法是一种简单、高效且有着广泛应用的分类方法,但在现实中,条件独立性假设影响了其分类性能。为克服该问题,给出一种改进算法---样本-属性加权的朴素贝叶斯算法。首先,对属性计算相关系数得到属性权值;其次,利用属性权结合信息熵获得样本熵权,并据此加权样本以提高泛化能力;然后,给出了样本-属性加权的朴素贝叶斯算法;最后,在 UCI 数据集上的实验结果验证了改进算法比原算法具有更好的分类性能。
推荐文章
基于属性约简的PLS加权朴素贝叶斯分类
加权朴素贝叶斯分类
属性约简
偏最小二乘回归
加权朴素贝叶斯算法在消防检测中的应用
消防检测
属性加权
朴素贝叶斯算法
信息增益
权重
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
一种新型加权朴素贝叶斯分类算法
数据挖掘
朴素贝叶斯
属性频率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 样本-属性加权的朴素贝叶斯改进算法
来源期刊 微型机与应用 学科 工学
关键词 朴素贝叶斯 样本-属性加权 条件独立性假设
年,卷(期) 2014,(6) 所属期刊栏目
研究方向 页码范围 62-63,67
页数 3页 分类号 TP391
字数 2089字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾文赋 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (63)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
朴素贝叶斯
样本-属性加权
条件独立性假设
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导