基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
样条权函数神经网络克服了很多传统神经网络(如BP、RBF)的缺点:比如局部极小、收敛速度慢等。样条权函数神经网络的拓扑结构简单,训练后的神经网络的权值是输入样本的函数,能够精确记忆训练过的样本,可以很好地反映样本的信息特征,亦可以求得全局最小值。为了克服传统网络在指纹识别中的弊端,文中利用了样条权函数神经网络的优点,介绍了其在指纹识别中的应用。首先通过主成分分析方法对指纹图像进行特征提取,然后利用样条权函数神经网络进行指纹识别,最后通过Matlab仿真与其他传统的神经网络进行比较,验证了样条权函数在指纹识别方面的可行性且比传统神经网络效率更高。
推荐文章
基于样条权函数神经网络的入侵检测
样条权函数
神经网络
入侵检测
基于DHNN人工神经网络的指纹识别技术
DHNN
指纹
权值
网络学习
收敛
一种基于神经网络匹配的指纹识别算法
指纹识别
神经网络
模板匹配
基于三次样条权函数神经网络的钢坯温度预报
钢坯
温度预报
三次样条权函数
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 样条权函数神经网络在指纹识别中的应用
来源期刊 计算机技术与发展 学科 工学
关键词 样条权函数 神经网络 指纹识别 人工智能 插值
年,卷(期) 2014,(6) 所属期刊栏目 应用开发研究
研究方向 页码范围 170-173
页数 4页 分类号 TP39
字数 3143字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.06.042
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张代远 南京邮电大学计算机学院 65 457 10.0 19.0
10 王家凯 南京邮电大学计算机学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (12)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
样条权函数
神经网络
指纹识别
人工智能
插值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导