原文服务方: 现代电子技术       
摘要:
针对风电机组齿轮箱故障诊断技术的不足,提出一种基于LVQ神经网络的故障诊断方法,利用小波分析方法对某风电机组齿轮箱正常状态、磨损故障和断齿故障状态下的振动信号进行降噪处理,在时域和频域内提取了5个特征参数对所建立的模型进行训练。为了检验模型的实际诊断能力,与标准BP神经网络的诊断结果进行对比。仿真结果表明:基于LVQ神经网络的故障诊断速度更快、准确率更高、泛化能力更强,验证了所提出方法的实用性和有效性。
推荐文章
基于DHNN的风电机组齿轮箱故障诊断
离散Hopfield神经网络
齿轮箱
故障诊断
泛化能力
基于RBF神经网络的齿轮箱故障诊断
BP神经网络
径向基函数神经网络
故障诊断
齿轮箱
齿轮箱故障诊断灰色神经网络模型的研究
齿轮箱
灰色神经网络
故障诊断
带偏差单元递归神经网络齿轮箱故障诊断
坦克传动系统
齿轮箱
故障诊断
递归神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LVQ神经网络风电机组齿轮箱故障诊断研究
来源期刊 现代电子技术 学科
关键词 LVQ神经网络 BP神经网络 风电机组 齿轮箱 故障诊断
年,卷(期) 2014,(10) 所属期刊栏目 能源技术
研究方向 页码范围 150-152
页数 3页 分类号 TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨友林 渤海大学工学院 20 161 7.0 12.0
2 巫庆辉 渤海大学工学院 46 413 9.0 18.0
3 丁硕 渤海大学工学院 42 451 11.0 19.0
4 常晓恒 渤海大学工学院 34 306 8.0 16.0
5 魏洪峰 渤海大学工学院 5 30 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (65)
参考文献  (8)
节点文献
引证文献  (11)
同被引文献  (48)
二级引证文献  (24)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(7)
  • 引证文献(4)
  • 二级引证文献(3)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(15)
  • 引证文献(2)
  • 二级引证文献(13)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
LVQ神经网络
BP神经网络
风电机组
齿轮箱
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导