原文服务方: 河南科学       
摘要:
运用具有联想记忆功能的离散Hopfield神经网络(DHNN)对风电机组齿轮箱的故障进行诊断,选用时域和频域的5个故障特征指标作为评价因子,利用MATLAB工具箱建立一个可以对风电机组齿轮箱的3种故障进行诊断的DHNN模型,并将该模型用于北方某风电场的实测数据的故障诊断,验证模型的泛化能力。仿真结果表明, DHNN的诊断结果准确率高、收敛速度快,具有很好的实用性。
推荐文章
基于LVQ神经网络风电机组齿轮箱故障诊断研究
LVQ神经网络
BP神经网络
风电机组
齿轮箱
故障诊断
基于阶次分析的非平稳工况下风力发电机组齿轮箱故障诊断
风力发电机组
齿轮箱
阶次分析
非平稳
故障诊断
基于傅里叶分解方法的风电齿轮箱故障诊断
傅里叶分解方法
经验模式分解
风电齿轮箱
故障诊断
基于BP网络的舰炮齿轮箱故障诊断方法
信息处理技术
BP网络
故障诊断
齿轮箱
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DHNN的风电机组齿轮箱故障诊断
来源期刊 河南科学 学科
关键词 离散Hopfield神经网络 齿轮箱 故障诊断 泛化能力
年,卷(期) 2016,(6) 所属期刊栏目 建筑科学与工业技术
研究方向 页码范围 923-926
页数 4页 分类号 TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 巫庆辉 渤海大学工学院 46 413 9.0 18.0
2 丁硕 渤海大学工学院 42 451 11.0 19.0
3 常晓恒 渤海大学工学院 34 306 8.0 16.0
4 张放 渤海大学工学院 4 37 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (88)
共引文献  (38)
参考文献  (15)
节点文献
引证文献  (1)
同被引文献  (17)
二级引证文献  (4)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(12)
  • 参考文献(1)
  • 二级参考文献(11)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(11)
  • 参考文献(3)
  • 二级参考文献(8)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(4)
  • 参考文献(3)
  • 二级参考文献(1)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
离散Hopfield神经网络
齿轮箱
故障诊断
泛化能力
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科学
月刊
1004-3918
41-1084/N
大16开
1982-01-01
chi
出版文献量(篇)
7317
总下载数(次)
0
总被引数(次)
26314
论文1v1指导