基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前大部分多目标进化算法采用Pareto排序为种群个体指定适应度值;然而随着优化目标个数增加,种群中非支配个体的比例越来越大,造成上述算法的搜索能力迅速下降.针对高维(4个以上)目标优化问题,提出了一种全排序方法;该排序方法与Pareto排序具有一致性,并且能够对非支配解进行比较;因此基于全排序的多目标进化算法不受目标个数增加的影响.为了提高算法的优化效果,设计了一个混沌映射算子,用来周期性地初始化种群,以保证种群的多样性与均匀分布.最后,采用标准测试问题对所提算法与著名的非支配快速排序遗传算法(NSGA2)进行了实验比较.结果表明在高维目标优化问题中,所提算法无论在收敛精度,还是算法运行效率上都高于NSGA2算法.
推荐文章
基于多策略排序变异的多目标差分进化算法
多目标优化
多策略差分进化
排序变异算子
自适应参数调整
基于新的适应度函数和多搜索策略的高维多目标进化算法
高维多目标优化
适应度函数
多搜索策略
进化算法
多样性指导进化算法及其在机器人路径规划中的应用
多样性
进化算法
黄金分割律
机器人
路径规划
早熟现象
基于Pareto的多目标进化免疫算法
进化免疫
Pareto最优解
基于信息熵的密度估计
克隆选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全排序与混沌多样性的高维目标进化算法
来源期刊 科学技术与工程 学科 工学
关键词 多目标进化 高维目标 全排序 混沌
年,卷(期) 2014,(28) 所属期刊栏目 论文
研究方向 页码范围 108-112
页数 5页 分类号 TP391.9
字数 4322字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 石林江 安顺学院电子与信息工程学院 18 19 2.0 3.0
2 田建勇 山东大学信息科学与工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (44)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (24)
二级引证文献  (1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多目标进化
高维目标
全排序
混沌
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导