基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
中文短文本自身包含词汇个数少、描述信息能力弱,常用的文本分类方法对于短文本分类效果不理想。同时传统的文本分类方法在处理大规模文本分类时会出现向量维数很高的情况,造成算法效率低,而且一般用于长文本分类的特征选择方法都是基于数理统计的,忽略了文本中词项之间的语义关系。针对以上问题本文提出基于卡方特征选择和LDA主题模型的中文短文本分类方法,方法使用LDA主题模型的训练结果对传统特征选择方法进行特征扩展,以达到将数理信息和语义信息融入分类算法的目的。对比试验表明,这种方法提高了中文短文本分类效果。
推荐文章
基于Sentence-LDA主题模型的短文本分类
短文本分类
Sentence-LDA
主题模型
特征扩展
SVM
基于LDA-wSVM模型的文本分类研究
文本分类
潜在狄利克雷分布
支持向量机
权重计算
吉普斯抽样
基于支持向量机的中文极短文本分类模型
支持向量机
jieba分词
极短文本分类
TF-IDF
基于LDA特征扩展的短文本分类
隐含狄利克雷分布
文本分类
支持向量机
特征扩展
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卡方特征选择和LDA主题模型的中文短文本分类
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 短文本分类 特征选择 主题模型
年,卷(期) 2014,(5) 所属期刊栏目
研究方向 页码范围 3182-3185
页数 4页 分类号 TP18
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑诚 安徽大学计算机科学与技术学院 103 1013 15.0 28.0
2 刘倩倩 安徽大学计算机科学与技术学院 18 35 4.0 5.0
3 熊大康 安徽大学计算机科学与技术学院 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (24)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(4)
  • 参考文献(4)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短文本分类
特征选择
主题模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导