原文服务方: 安徽工业大学学报(自然科学版)       
摘要:
针对短文本简短的特性,为提高对其进行情感分类准确率,提出了T-CLSTM(Topic-based Context CLSTM)模型.该模型通过LDA模型生成词主题向量,并构建滑动窗口词主题上下文和层次词主题上下文,实现短文本信息扩展.探讨词主题、词主题上下文的构成,以及滑动窗口尺寸对词主题上下文的影响;将词向量和词主题上下文向量作为输入特征量训练分类模型,进行情感分类.在COAE2014语料上进行实验,结果表明,本文提出的模型分类准确率可达92.3%,相比baseline算法SVM和LSTM分别提高2%和4%.
推荐文章
结合情感词网的中文短文本情感分类
同义词
情感词网
情感分类
短文本
基于ConvLSTM模型的短文本情感分类研究
短文本
情感分类
CNN
LSTM
ConvLSTM模型
深度学习模型
基于复杂句式短文本情感分类研究
文本信息处理
情感分析
复杂句式
word2vec
情感分类模型
SVM
基于教学评价的中文短文本情感分析
教学评价
词典
word2vec
支持向量机
核函数
情感分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合主题的CLSTM短文本情感分类
来源期刊 安徽工业大学学报(自然科学版) 学科
关键词 主题 滑动窗口 上下文 长短期记忆模型 情感分类
年,卷(期) 2017,(3) 所属期刊栏目 信息与经管
研究方向 页码范围 289-295
页数 7页 分类号 TP391.1
字数 语种 中文
DOI 10.3969/j.issn.1671-7872.2017.03.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦锋 安徽工业大学计算机科学与技术学院 81 783 15.0 25.0
2 郑啸 安徽工业大学计算机科学与技术学院 54 1140 12.0 33.0
3 黄超 安徽工业大学计算机科学与技术学院 2 3 1.0 1.0
4 邵光梅 安徽工业大学计算机科学与技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (97)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
主题
滑动窗口
上下文
长短期记忆模型
情感分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽工业大学学报(自然科学版)
季刊
1671-7872
34-1254/N
大16开
1984-01-01
chi
出版文献量(篇)
2161
总下载数(次)
0
总被引数(次)
11633
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导