基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于细颗粒物(PM2.5)浓度(质量浓度ρ,全文同)影响因素的复杂性,以及传统预测方法中存在的困难和不足,基于小波神经网络,利用松江区环保局PM2.5的浓度数据,建立了短时PM2.5浓度预测模型.通过与灰色理论预测模型、BP神经网络预测模型的对比试验分析,发现基于小波神经网络预测模型的预测值与实际值之间的误差最小,更能准确地反映样本数据之间的映射关系,预测精度明显高于其他两种预测模型.
推荐文章
基于BP人工神经网络的鹰潭市PM2.5和PM10浓度预测模型
大气颗粒物
预测模型
BP人工神经网络
气象要素
气体污染物
基于LSTM的PM2.5浓度预测模型
PM2.5
LSTM循环神经网络
时序特征
基于改进神经网络算法的PM2.5污染信号分析检测
改进神经网络算法
污染检测
网络误差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波神经网络的松江区PM2.5浓度预测
来源期刊 上海工程技术大学学报 学科 地球科学
关键词 小波神经网络 细颗粒物(PM2.5) 预测模型
年,卷(期) 2015,(2) 所属期刊栏目 数理科学与应用
研究方向 页码范围 175-178
页数 4页 分类号 X513
字数 2401字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖翔 上海工程技术大学基础教学学院 68 63 4.0 4.0
2 袁陈晨 上海工程技术大学材料工程学院 5 8 2.0 2.0
3 古晞 同济大学数学系 12 31 4.0 5.0
4 顾昊元 上海工程技术大学材料工程学院 2 8 2.0 2.0
5 黄梦斌 上海工程技术大学材料工程学院 2 8 2.0 2.0
6 严佳 上海工程技术大学材料工程学院 2 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (72)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (17)
二级引证文献  (2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波神经网络
细颗粒物(PM2.5)
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海工程技术大学学报
季刊
1009-444X
31-1598/T
16开
上海市松江大学城龙腾路333号
1987
chi
出版文献量(篇)
1693
总下载数(次)
1
论文1v1指导