基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Bike sharing is considered a state-of-the-art transportation program. It is ideal for short or medium trips providing riders the ability to pick up a bike at any self-serve bike station and return it to any bike station located within the system’s coverage area. The bike sharing programs in the United States are still very young compared to those in European countries. Washington DC was the first jurisdiction to devise a third generation bike sharing system in the US in 2008. To evaluate the popularity of a bike sharing program, a sentiment analysis of the riders’ feedback can be performed. Twitter is a great platform to understand people’s views instantly. Social media mining is, thus, gaining popularity in many research areas including transportation. Social media mining has two major advantages over conventional attitudinal survey methods—it can easily reach a large audience and it can reflect the true behavior of participants because of the anonymity social media provides. It is known that self-imposed censor is common in responding to conversational attitudinal surveys. This study performed text mining on the tweets related to a case study (Capital Bike share of Washington DC) to perform sentiment analysis or opinion mining. The results of the text mining mostly revealed higher positive sentiments towards the current system.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Investigating User Ridership Sentiments for Bike Sharing Programs
来源期刊 交通科技期刊(英文) 学科 医学
关键词 BIKE SHARING Social Media Twitter MINING Text ANALYTIC SENTIMENT Analysis OPINION MINING
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 69-75
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BIKE
SHARING
Social
Media
Twitter
MINING
Text
ANALYTIC
SENTIMENT
Analysis
OPINION
MINING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通科技期刊(英文)
季刊
2160-0473
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
254
总下载数(次)
0
总被引数(次)
0
论文1v1指导