基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A hypothesis of the existence of dominant pattern that may affect the performance of a neural based pattern recognition system and its operation in terms of correct and accurate classification, pruning and optimization is assumed, presented, tested and proved to be correct. Two sets of data subjected to the same ranking process using four main features are used to train a neural network engine separately and jointly. Data transformation and statistical pre-processing are carried out on the datasets before inserting them into the specifically designed multi-layer neural network employing Weight Elimination Algorithm with Back Propagation (WEA-BP). The dynamics of classification and weight elimination process is correlated and used to prove the dominance of one dataset. The presented results proved that one dataset acted aggressively towards the system and displaced the first dataset making its classification almost impossible. Such modulation to the relationships among the selected features of the affected dataset resulted in a mutated pattern and subsequent re-arrangement in the data set ranking of its members.
推荐文章
Twig pattern查询处理研究综述和分析
小枝模式
索引
连接算法
3DPE模型在山区无线通信中的应用
三维抛物方程
刃锋绕射
菲涅尔原理
电波传播
基于GPU实现SlideShow中的effect和transition
图像处理器
Direct3D
SlideShow
固定功能流水线
可编程流水线
高级渲染语言
顶点渲染
像素渲染
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Disparity in Intelligent Classification of Data Sets Due to Dominant Pattern Effect (DPE)
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Pattern Recognition Neural Networks RANKING Datasets Weight ELIMINATION PRUNING MUTATION Genetic Algorithms
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 75-86
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Pattern
Recognition
Neural
Networks
RANKING
Datasets
Weight
ELIMINATION
PRUNING
MUTATION
Genetic
Algorithms
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导