Linear canonical transform (LCT) is widely used in physical optics, mathematics and information processing. This paper investigates the generalized uncertainty principles, which plays an important role in physics, of LCT for concentrated data in limited supports. The discrete generalized uncertainty relation, whose bounds are related to LCT parameters and data lengths, is derived in theory. The uncertainty principle discloses that the data in LCT domains may have much higher concentration than that in traditional domains.