基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Meta-heuristic algorithms proved to find optimal solutions for combinatorial problems in many domains. Nevertheless, the efficiency of these algorithms highly depends on their parameter settings. In fact, finding appropriate settings of the algorithm’s parameters is considered to be a nontrivial task and is usually set manually to values that are known to give reasonable performance. In this paper, Ant Colony Optimization with Parametric Analysis (ACO-PA) is developed to overcome this drawback. The main feature of the ACO-PA is the ability of deciding the appropriate parameter values within the predefined parameter variations. Besides, a new approach which enables the pheromone information value to be proportional to the heuristic information value is introduced. The effectiveness of the proposed algorithm is investigated through the application of the algorithm to the construction site layout problems taken from the state-of-art. Results show that the ACO-PA can reduce transportation cost up to 16.8% compared to the site layouts generated by Genetic Algorithms and basic ACO. Moreover, the effects of parameter settings on the generated solutions are investigated.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Improved Ant Colony Optimization Algorithm for Construction Site Layout Problems
来源期刊 房屋建造与规划研究(英文) 学科 医学
关键词 ANT COLONY Optimization Construction SITE Layout PARAMETER SETTINGS
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 221-232
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ANT
COLONY
Optimization
Construction
SITE
Layout
PARAMETER
SETTINGS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
房屋建造与规划研究(英文)
季刊
2328-4889
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
127
总下载数(次)
0
总被引数(次)
0
论文1v1指导