Certain important results concerning p-envelopes of modular Lie algebras are generalized to the super-case. In particular, any p-envelope of the Lie algebra of a Lie superalgebra can be naturally extended to a restricted envelope of the Lie superalgebra. As an application, a theorem on the representations of Lie superalgebras is given, which is a super-version of Iwasawa's theorem in Lie algebra case. As an example, the minimal restricted envelopes are computed for three series of modular Lie superalgebras of Cartan type.