为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略.DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感.为此,提出改进算法,首先将密度进行层次划分,由此得出各层次的密度阈值,在每种阈值下采用DBSCAN算法,解决全局参数问题.在此基础上,创新地使用一个直接可达距离排序队列,将排序信息作为可变参数,减小初始参数对结果的影响.通过高性能计算中心用户数据的实例验证了其可行性.实验结果表明,改进后的算法提高了用户分类的准确性和全面性.