对互联网拓扑结构局部特性展开研究,针对已有IP定位数据库的异构性和准确率不高造成的特征度量分析存在偏差的问题,提出了一种基于机器学习的修正算法(IPM G )。以复杂网络为基础,结合网络测量数据和已有IP定位数据库中的IP地理位置信息,定义了互联网局部拓扑结构的地理度和地理介数这两种新的特征度量;分析了地理度和地理介数分布的幂律特性以及二者与IP地理位置之间的关系;运用机器学习的方法修正了不同IP定位数据库之间存在的分析有偏差的问题,并通过交叉验证和地标验证结合的方法验证了IPM G算法的有效性。实验结果表明:IPM G算法有效修正地理度和地理介数的同时提高了IP定位数据库的准确率。