基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前基于多模型的图像集分类方法通过对每个图像集进行单次聚类来提取局部模型,与其他图像集进行匹配时使用固定的聚类.然而,如果环境条件不佳,则可能导致两个最近邻聚类表示同一对象的不同特征.针对这一问题,首先,根据重建误差,在Grassmann流形上定义两个子空间间的Frobenius范数距离.然后,通过稀疏表示从画廊图像集中提取局部线性子空间.对每个局部线性子空间,通过联合稀疏表示,利用探测图像集的样本来自适应构建相应的最近邻子空间.基于Honda、ETH-80和Cambridge-Gesture数据集的实验结果表明,与基于仿射包的图像集距离(AHISD)、稀疏近似最近邻点(SANP)和流形判别分析(MDA)等其他算法相比,算法的性能更优.
推荐文章
一种新的基于Grassmann流形度量的手写体数字识别方法
手写字符识别
Grassmann流形
几何变换
最近邻分类
基于虚拟样本图像集的多流形鉴别学习算法
单样本人脸识别
虚拟样本
通用训练样本集
多流形鉴别学习
一种基于图像特征的图像分类方法
图像特征
图像分类
颜色
纹理
边缘特征
一种基于邻域粗糙集特征选择的图像分类方法
图像分类
邻域粗糙集
特征选择
空间金字塔匹配
HOG
SURF
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于Grassmann流形的图像集分类算法研究
来源期刊 微型电脑应用 学科 工学
关键词 图像集分类 聚类 Grassmann流形 稀疏表示 最近邻子空间
年,卷(期) 2015,(1) 所属期刊栏目 研究与设计
研究方向 页码范围 8-13
页数 6页 分类号 TP393
字数 6483字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄淼 平顶山学院软件学院 41 148 6.0 10.0
2 张国平 平顶山学院软件学院 61 243 8.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (6)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(3)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像集分类
聚类
Grassmann流形
稀疏表示
最近邻子空间
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导