基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了有效地提取轴承的故障特征信号并进行准确的分类,采用在小波包变换中引入交叉验证遗传算法与支持向量机相结合的方法来识别故障轴承所发出的不稳定特征信号并进行诊断。首先,利用小波包变换的时-频化特征对瞬时变化的故障信号进行提取。然后,运用交叉验证遗传算法和支持向量机构建分类器对参数进行检测、优化和故障模式识别。最后,经实验来验证此算法的合理性。实验结果表明,此方法对于有限样本故障信号的检测和分类具有很高的准确性和可靠性、实时性。
推荐文章
基于EMD与GA-SVM的轴承故障诊断
轴承
故障诊断
特征提取
特征选择
经验模态分解
Shannon熵
Renyi熵
遗传算法
最小二乘支持向量机
Wrapper
基于QPSO-SVM的轴承故障诊断方法
量子粒子群
支持向量机
参数优化
故障诊断
EMD分解
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
基于ELMD与LS-SVM的滚动轴承故障诊断方法
ELMD
模式混淆
LS-SVM
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CV-GA-SVM方法的轴承故障诊断
来源期刊 计算机系统应用 学科
关键词 交叉验证遗传算法 故障诊断 小波包变换 高斯径向基核函数 支持向量机 参数优化
年,卷(期) 2015,(5) 所属期刊栏目 研究开发
研究方向 页码范围 215-219
页数 5页 分类号
字数 2712字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭琳 2 2 1.0 1.0
2 徐德军 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (110)
共引文献  (307)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(12)
  • 参考文献(2)
  • 二级参考文献(10)
2009(18)
  • 参考文献(2)
  • 二级参考文献(16)
2010(18)
  • 参考文献(1)
  • 二级参考文献(17)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交叉验证遗传算法
故障诊断
小波包变换
高斯径向基核函数
支持向量机
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
论文1v1指导