基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we consider two methods, the Second order Central Difference Method (SCDM) and the Finite Element Method (FEM) with P1 triangular elements, for solving two dimensional general linear Elliptic Partial Differential Equations (PDE) with mixed derivatives along with Dirichlet and Neumann boundary conditions. These two methods have almost the same accuracy from theoretical aspect with regular boundaries, but generally Finite Element Method produces better approximations when the boundaries are irregular. In order to investigate which method produces better results from numerical aspect, we apply these methods into specific examples with regular boundaries with constant step-size for both of them. The results which obtained confirm, in most of the cases, the theoretical results.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Computational Study with Finite Element Method and Finite Difference Method for 2D Elliptic Partial Differential Equations
来源期刊 应用数学(英文) 学科 数学
关键词 FINITE Element METHOD FINITE Difference METHOD Gauss Numerical QUADRATURE Dirichlet BOUNDARY CONDITIONS NEUMANN BOUNDARY CONDITIONS
年,卷(期) 2015,(12) 所属期刊栏目
研究方向 页码范围 2104-2124
页数 21页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FINITE
Element
METHOD
FINITE
Difference
METHOD
Gauss
Numerical
QUADRATURE
Dirichlet
BOUNDARY
CONDITIONS
NEUMANN
BOUNDARY
CONDITIONS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导