针对当前移动终端使用中存在的安全隐患,研究了一种新的面向Android移动终端的入侵检测算法。首先是在Android平台上收集移动终端内核信息并进行预处理,通过引入快速核密度估计(fast kernel density es-timation,FastKDE)算法对收集到的大规模样本进行压缩,得到数量合理的训练样本,然后结合在线增量学习算法,利用支持向量机(SVM)算法对处理后的数据进行判别以识别出入侵。实验结果表明,该方法极大缩短了训练时间,检测性能逐步达到最佳,具有较好的可扩展性和自提升能力。