基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对动力电池荷电状态的预测精度问题,提出基于遗传算法的弹性径向基函数神经网络动力电池荷电状态预测方法.该预测方法基于神经元的活跃度与神经元间的信息交互强度在线调整神经网络结构的大小,解决了径向基函数神经网络的结构调整影响荷电状态的预测精度问题.仿真结果证明,该方法比基于遗传算法的径向基函数神经网络的荷电状态预测结果精度更高,预测更加准确,能满足蓄电池管理系统对磷酸铁锂动力电池荷电状态预测的精度和实际使用的要求.
推荐文章
RTG用高功率磷酸铁锂电池SOC分析
高功率FePO4锂电池
线性积分
端电压矫正
基于GA-RBF网络的磷酸铁锂电池SOC预测研究
荷电状态(SOC)
磷酸铁锂电池
基于遗传算法的径向基函数(GA-RBF)
神经网络
基于RBF网络的锂电池SOC估算研究
电池管理系统
电池荷电状态
径向基函数
代价函数
梯度下降
纯电动汽车磷酸铁锂电池组的建模及优化
传统神经网络
支持向量机
磷酸铁锂电池组
荷电状态
极限学习机
粒子群优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA-F-RBF神经网络的磷酸铁锂电池SOC预测研究
来源期刊 电源技术 学科 工学
关键词 荷电状态(SOC)预测 神经网络 弹性径向基函数 神经网络结构优化
年,卷(期) 2015,(12) 所属期刊栏目 研究与设计
研究方向 页码范围 2584-2586,2713
页数 4页 分类号 TM912.9
字数 2970字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (81)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (14)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(7)
  • 参考文献(3)
  • 二级参考文献(4)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
荷电状态(SOC)预测
神经网络
弹性径向基函数
神经网络结构优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电源技术
月刊
1002-087X
12-1126/TM
大16开
天津296信箱44分箱
6-28
1977
chi
出版文献量(篇)
9323
总下载数(次)
56
总被引数(次)
55810
论文1v1指导