基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着社交网的广泛流行,用户的数量也急剧增加,针对社交网络用户难以在海量用户环境中快速发现其可能感兴趣的潜在好友的问题,各种推荐算法应运而生,协同过滤算法便是其中最为成功的思想。然而目前的协同过滤算法普遍存在数据稀疏性和推荐精度低等问题,为此提出一种基于动态K-means聚类双边兴趣协同过滤好友推荐算法。该算法结合动态K-means算法对用户进行聚类以降低稀疏性,同时提出相似度可信值的概念调整相似度计算方法以提高相似度精度;利用调整后的相似度分别从用户的吸引与偏好两方面计算近邻用户集,综合考虑这两方面近邻对当前用户的择友影响来生成推荐列表。实验证明,相较于基于用户的协同过滤算法,该算法能有效提高系统的推荐精度与效率。
推荐文章
基于社区划分的多线程潜在好友推荐算法
多线程
社区划分
核心关系子网
标签传播
好友推荐
基于信任社交圈的好友推荐算法
好友推荐
社交网络
社交圈
信任度
相似度
基于位置社交网络的个性化兴趣点推荐
兴趣点推荐
位置信息
分类信息
流行度信息
社会信息
位置社交网络
结合非负矩阵分解的主题社区好友推荐算法
社交网络
非负矩阵因式分解
主题社区
好友推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双边兴趣的社交网好友推荐方法研究
来源期刊 计算机工程与应用 学科 工学
关键词 协同过滤 相似度可信值 动态K-means 双向兴趣 社交网络
年,卷(期) 2015,(6) 所属期刊栏目
研究方向 页码范围 108-113
页数 6页 分类号 TP311
字数 6709字 语种 中文
DOI 10.3778/j.issn.1002-8331.1307-0357
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘善亮 宁波大学信息科学与工程学院 32 126 7.0 10.0
2 何静 宁波大学信息科学与工程学院 39 124 6.0 9.0
3 韩露 宁波大学信息科学与工程学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (816)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (9)
二级引证文献  (9)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(8)
  • 参考文献(1)
  • 二级参考文献(7)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(15)
  • 参考文献(6)
  • 二级参考文献(9)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(4)
  • 引证文献(4)
  • 二级引证文献(0)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
协同过滤
相似度可信值
动态K-means
双向兴趣
社交网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导