基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
微博话题检测是当前研究的热点,提出一种基于复杂网络重叠社团发现的微博话题检测方法。该方法对一段时间内的微博数据进行预处理,在分词后,根据词性以及词的时域分布抽取出主题词,在相关度高的主题词之间构造边得到复杂网络。引入社团独立模块度的概念,并通过社团独立模块度最大化模型发现重叠社团,把每个社团看成一个微博话题。重叠社团发现的方法可以解决由一个或多个主题词属于多个话题引起的话题检测准确率低的问题。实验结果证明了该方法在微博话题检测中的有效性。
推荐文章
基于复杂网络重叠社团发现的微博话题检测
复杂网络
重叠社团发现
话题检测
青少年
基于速度增长的微博热点话题发现
增长斜率
增长速度
时间二元组序列
热点发现
基于SOM聚类的微博话题发现
话题发现
词向量模型
文本相似度
短文本
SOM聚类
基于隐主题分析的中文微博话题发现
中文微博
话题发现
隐主题模型
文本聚类
频繁项集挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于重叠社团发现的微博话题检测方法
来源期刊 计算机工程与应用 学科 工学
关键词 微博 话题检测 复杂网络 重叠社团发现
年,卷(期) 2015,(6) 所属期刊栏目
研究方向 页码范围 93-98
页数 6页 分类号 TP391.1
字数 6588字 语种 中文
DOI 10.3778/j.issn.1002-8331.1402-0074
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姬东鸿 武汉大学计算机学院 92 887 16.0 26.0
2 程飞 武汉大学计算机学院 7 48 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (271)
参考文献  (13)
节点文献
引证文献  (4)
同被引文献  (17)
二级引证文献  (22)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(10)
  • 参考文献(1)
  • 二级参考文献(9)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(11)
  • 参考文献(1)
  • 二级参考文献(10)
2011(9)
  • 参考文献(4)
  • 二级参考文献(5)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(10)
  • 引证文献(0)
  • 二级引证文献(10)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
微博
话题检测
复杂网络
重叠社团发现
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导