基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于密度中心图的弱监督分类方法,利用少量已标注样本,结合大量未知模式样本进行弱监督学习。借助样本空间的密度信息,求出密度中心点来准确地反应数据的空间几何特征,在此基础上建图,利用标记传递方法,使得相似的顶点尽可能赋予相同的类别标记。该方法具备基于图的弱监督算法的良好数学基础,可以发现任意形状的类,对噪音不敏感。并且该方法具有近线性的时间复杂度,更适合处理大规模的数据。将该方法用于UCI机器学习数据集,实验证明,该方法能获得较好的分类效果。
推荐文章
基于数据密度的半监督自训练分类算法
半监督学习
自训练
密度
分类
基于锚点建图的半监督分类在遥感图像中的应用
遥感图像
图像分类
mean shift
锚点
基于密度自适应邻域相似图的半监督谱聚类
谱聚类
密度自适应邻域
相似图
半监督学习
基于显著图的弱监督实时目标检测
弱监督
实时目标检测
显著图
伪标注
深度卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度中心图的弱监督分类方法
来源期刊 计算机工程与应用 学科 工学
关键词 弱监督学习 分类 密度 数据挖掘
年,卷(期) 2015,(6) 所属期刊栏目
研究方向 页码范围 6-10
页数 5页 分类号 TP311.1
字数 5046字 语种 中文
DOI 10.3778/j.issn.1002-8331.1408-0063
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 耿国华 西北大学信息科学与技术学院 497 5986 35.0 55.0
2 陈燕 西北大学信息科学与技术学院 7 19 3.0 4.0
6 贾晖 西北大学信息科学与技术学院 13 40 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (21)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (2)
二级引证文献  (10)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
弱监督学习
分类
密度
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导