作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在无监督学习中,k均值聚类以其快速简单的特点得到了广泛的应用。EM算法是针对缺失数据的一种统计学习方法。然而,k均值和EM这两种不同领域的算法在思想上却有着一致的地方。本文分析了k均值中蕴含的EM思想,指出了k均值中样本隶属度更新和类中心更新与EM算法中的E步和M步的等价性。最后,利用R语言矩阵化运算的特点,介绍在如何在R语言中高效地实现k均值聚类算法。
推荐文章
基于ISFLA的K均值聚类算法
SFLA
吸引排斥机制
ISFLA
K均值算法
基于图的K-均值聚类法中初始聚类中心选择
数据聚类
簇类
无向图
连通分支
基于核聚类的K-均值聚类
核聚类
K-均值聚类
径向基函数(RBF)
支持向量机(SVM)
基于层次的K-均值聚类
聚类
代价函数
层次
K-均值聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 k均值聚类中的EM思想
来源期刊 科技视界 学科
关键词 k均值 EM算法 聚类分析
年,卷(期) 2015,(17) 所属期刊栏目 高校科技
研究方向 页码范围 143-144
页数 2页 分类号
字数 3518字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马丽娜 西安财经学院行知学院信息系 15 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (273)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
k均值
EM算法
聚类分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技视界
旬刊
2095-2457
31-2065/N
大16开
上海市
2011
chi
出版文献量(篇)
57598
总下载数(次)
165
论文1v1指导