原文服务方: 西安交通大学学报       
摘要:
针对现有K均值聚类(KMC)算法在选取初始聚类中心时随机性较大、全局搜索能力差、聚类精度低等问题,提出了一种引入改进飞蛾扑火的K均值交叉迭代聚类(IMFO-KMC)算法.利用最大最小距离积法初始化聚类中心,避免了KMC算法对随机初始聚类中心较为敏感的问题;利用样条插值预测的思想改进飞蛾扑火算法,提高了算法的收敛速度及寻优精度;以类内平均距离为适应度函数,引导插值扑火算法优化KMC迭代过程中的聚类中心,提高了聚类精度.将IMFO-KMC与KMC、K-means++算法、模糊c均值聚类算法在国际标准数据集Iris、Wine和Seeds上进行了实验对比,结果表明:IMFO-KMC算法在Iris数据集上的性能提升最为明显,相比其他算法准确率提高了0.67%~4.18%,标准化互信息提高了1.5%~4.01%.
推荐文章
基于改进飞蛾扑火算法的微带天线设计优化
飞蛾扑火优化算法
引力搜索算法
微带天线
融合折射原理反向学习的飞蛾扑火算法
飞蛾扑火算法
折射原理
反向学习
群智能算法
种群多样性
基于改进花朵授粉的K-均值聚类算法
聚类
花朵授粉
混沌映射
禁忌搜索
K-means
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 引入改进飞蛾扑火的K均值交叉迭代聚类算法
来源期刊 西安交通大学学报 学科
关键词 飞蛾扑火算法 聚类中心 K均值聚类 类内平均距离 最大最小距离积法
年,卷(期) 2020,(9) 所属期刊栏目
研究方向 页码范围 32-39
页数 8页 分类号 TP301.6
字数 语种 中文
DOI 10.7652/xjtuxb202009003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 茹锋 34 145 5.0 11.0
2 王会峰 35 111 7.0 9.0
3 郭璐 12 58 4.0 7.0
4 黄鹤 28 41 4.0 5.0
5 李昕芮 2 0 0.0 0.0
6 吴琨 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (95)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(12)
  • 参考文献(3)
  • 二级参考文献(9)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
飞蛾扑火算法
聚类中心
K均值聚类
类内平均距离
最大最小距离积法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导