针对时空数据库中,移动对象轨迹的连续K近邻查询(continuous K nearest neighbor query,CKNN)的查询效率较低的问题,以及在分布式的移动对象数据库(moving objects databases,MOD)环境下,提升对应查询结果的数据汇聚效率问题进行了研究.在CKNN查询中,设计优化了查询海滩线的更新算法,通过在轨迹数据结构中增加更新标志位,减少了轨迹线段参与的判定运算;同时在假设的类网格覆盖的分布式空间环境下,利用基于Bresenham覆盖的路由汇聚(Bresenham-based overlay for routing and aggregation,BORA)方法,进行查询结果的汇聚;并针对不同近邻参数、轨迹数目、移动对象速度、汇聚方式等对查询时间的影响进行了仿真实验;仿真结果表明,不同参数数值的增加延长了处理时间,基于BORA的汇聚方式比一般的汇聚方式节省了更多的处理时间,提高了系统查询及处理的效率.