作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文选取以人人贷为例的P2P平台上5718条标的信息记录,以能反映标的状况的变量作为因变量,以借出信用分、借款金额等5个变量作为自变量,建立Logistic回归模型以帮助借款人对借款成功(满标)概率进行预测,最终模型预测的正确率达到93.7%。此外,以标的状况为因变量的决策树分类的结果显示误判率为0.05,综合两种方法最终得出信用等级、借出信用分数和以往逾期次数对标的状态影响最大,而标的类型的影响不显著。
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 P2P平台满标影响因素研究—以人人贷为例
来源期刊 数据挖掘 学科 经济
关键词 P2P LOGISTIC模型 决策树 误判率
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 54-59
页数 6页 分类号 F2
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘梦玲 上海财经大学浙江学院 2 13 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
P2P
LOGISTIC模型
决策树
误判率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据挖掘
季刊
2163-145X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
140
总下载数(次)
1
论文1v1指导