作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose: This study aims to answer the question to what extent different types of networks can be used to predict future co-authorship among authors.Design/methodology/approach: We compare three types of networks: unweighted networks, in which a link represents a past collaboration; weighted networks, in which links are weighted by the number of joint publications; and bipartite author-publication networks. The analysis investigates their relation to positive stability, as well as their potential in predicting links in future versions of the co-authorship network. Several hypotheses are tested.Findings: Among other results, we find that weighted networks do not automatically lead to better predictions. Bipartite networks, however, outperform unweighted networks in almost all cases.Research limitations: Only two relatively small case studies are considered.Practical implications: The study suggests that future link prediction studies on co-occurrence networks should consider using the bipartite network as a training network.Originality/value: This is the first systematic comparison of unweighted, weighted, and bipartite training networks in link prediction.
推荐文章
Characteristics of CO2 in unsaturated zone (~90 m) of loess tableland, Northwest China
Unsaturated zone
Soil CO2
Carbon stock in deep loess
Quantitative paleoclimate reconstruction
Loess
Adsorption characteristics of copper ion on nanoporous silica
Nanoporous silica
Copper ion
Adsorption
Geological and geochemical characteristics of the Baogudi Carlintype gold district (Southwest Guizho
Elemental geochemistry
Fluid inclusions
Stable isotopes
Carlin-type gold deposits
Baogudi gold district
Southwestern Guizhou
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Predictive Characteristics of Co-authorship Networks: Comparing the Unweighted, Weighted, and Bipartite Cases
来源期刊 数据与情报科学学报:英文版 学科 社会科学
关键词
年,卷(期) 2016,(3) 所属期刊栏目
研究方向 页码范围 59-78
页数 20页 分类号 G2
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
期刊文献
论文1v1指导