基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的迁移学习分类算法利用源域中大量有标签的数据和目标域中少量有标签的数据解决相关但不相同目标域的数据分类问题,但对于已知源域的不同类别数据均值的迁移学习分类问题并不适用。为了解决这个问题,利用源域的数据均值和目标域的少量标记数据构造迁移学习约束项,对最小最大概率机进行正则化约束,提出了基于最小最大概率机的迁移学习分类算法,简称TL?MPM。在20 News Groups数据集上的实验结果表明,目标域数据较少时,所提算法具有更高的分类正确率,从而说明了算法的有效性。
推荐文章
基于最小最大概率机的虹膜图像分类方法研究
虹膜
最小最大概率机
分类
相异度
证券组合投资的最大概率与最小风险分析
证券组合投资
当前价格
最大概率
最小风险
一种基于独立成分分析和最小最大概率机的人脸识别系统
人脸识别
haar特征
独立成分分析(ICA)
最小最大概率机(MPM)
基于最小最大概率机的客户需求分类技术
客户需求
最小最大概率机
多类别分类
输出编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小最大概率机的迁移学习分类算法
来源期刊 智能系统学报 学科 工学
关键词 迁移学习 最小最大概率机 分类 源域 目标域 正则化
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 84-92
页数 9页 分类号 TP391.4
字数 6493字 语种 中文
DOI 10.11992/tis.201505024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王士同 江南大学数字媒体学院 528 3424 23.0 37.0
2 许小龙 江南大学数字媒体学院 5 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (26)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(1)
  • 二级参考文献(0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移学习
最小最大概率机
分类
源域
目标域
正则化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导