基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the era of big data, personalized recommendation has become an important research issue in social networks as it can find and match user’s preference. In this paper, the user trust is integrated into the recommendation algorithm, by dividing the user trust into 2 parts: user score trust and user preference trust. In view of the common items in user item score matrix, the algorithm combines the number of items with the score similarity between users, and establishes an asymmetric trust relationship matrix so as to calculate the user’s score trust. For the non common score items, we use the attribute information of items and the scoring weight to calculate the user’s preference trust. Based on the user trust in social network, a new collaborative filtering recommendation algorithm is proposed. Besides, a new matrix factorization recommendation algorithm is proposed by combining the user trust with matrix factorization. We did the experiments comparing with the related algorithms on the real data sets of social network. The results show that the proposed algorithms can effectively improve the accuracy of recommendation.
推荐文章
TRUST滴度试验在梅毒治疗中的应用价值
梅毒螺旋体抗体
TRUST
TP-DNA
用于网格计算的Overlay Network 设计算法的研究
网格架构
Overlay Network
拓扑结构
拉格朗日松驰
NETWORK6000系统在酸站车间的应用
集散控制
联锁控制
NETWORK6000
粘胶短纤
闪蒸
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Personalized Recommendation Algorithm with User Trust in Social Network
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 RECOMMENDATION system COLLABORATIVE FILTERING Matrix FACTORIZATION USER TRUST Social network
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 20-22
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RECOMMENDATION
system
COLLABORATIVE
FILTERING
Matrix
FACTORIZATION
USER
TRUST
Social
network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导