基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Social computing, a cross science of computational science and social science, is affecting people’s learning, work and life recently. Face recognition is going deep into every field of social life, and the feature extraction is particularly important. Linear Discriminant Analysis (LDA) is an effective feature extraction method. However, the traditional LDA cannot solve the nonlinear problem and small sample problem existing in high dimensional space. In this paper, the method of the Support Vector-based Direct Discriminant Analysis (SVDDA) is proposed. It incorporates SVM algorithm into LDA, extends SVM to nonlinear eigenspace, and optimizes eigenvalue to improve performance. Moreover, this paper combines SVDDA with the social computing theory. The experiments were tested on different face datasets. Compared with other existing methods, SVDDA has higher robustness and optimal performance.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
FACE水稻生育期模拟
水稻
FACE
生育期
模拟模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A SVM-Based Feature Extraction for Face Recognition
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 DISCRIMINANT analysis FACE recognition Support VECTOR machine FEATURE extraction
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 33-34
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DISCRIMINANT
analysis
FACE
recognition
Support
VECTOR
machine
FEATURE
extraction
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导