基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了从石化装置大量工艺监测数据中提取有效的故障特征信息,及时地发现故障并准确地识别故障原因,提出了一种基于PCA和RBF神经网络的故障监测与诊断方法。首先获取工况样本,建立PCA模型,降维提取统计特征;设定正常工况SPE统计量阈值,建立在线工况SPE统计量,由此进行故障监测。然后对故障样本进行PCA降维,构建多个RBF神经网络模型,用以实施在线故障诊断,识别故障原因。最后把某石化公司气体分馏装置脱异丁烷单元作为实例,采用UniSim Design软件对该单元进行过程动态模拟,获得工况监测样本,建立了故障监测与诊断模型。研究结果表明,所提出的方法不仅能有效地对工况进行状态监测,而且能快速和准确地诊断故障。
推荐文章
基于RBF神经网络的齿轮箱故障诊断
BP神经网络
径向基函数神经网络
故障诊断
齿轮箱
基于时序-RBF神经网络的齿轮故障诊断方法
齿轮故障
诊断
时序分析
特征提取
RBF神经网络
基于PCA和RBF网络的故障诊断技术及其应用研究
主成分分析
RBF网络
特征提取
故障诊断
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA和RBF神经网络的石化装置故障监测与诊断
来源期刊 燕山大学学报 学科 工学
关键词 PCA RBF神经网络 故障监测与诊断 石化装置
年,卷(期) 2016,(5) 所属期刊栏目 化学工程
研究方向 页码范围 456-461
页数 6页 分类号 X913.4
字数 3699字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭丽杰 燕山大学环境与化学工程学院 14 92 6.0 9.0
5 康建新 燕山大学环境与化学工程学院 9 77 6.0 8.0
9 赵明娟 燕山大学环境与化学工程学院 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (38)
参考文献  (17)
节点文献
引证文献  (11)
同被引文献  (43)
二级引证文献  (10)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(5)
  • 参考文献(3)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(7)
  • 参考文献(3)
  • 二级参考文献(4)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(6)
  • 引证文献(5)
  • 二级引证文献(1)
2019(11)
  • 引证文献(5)
  • 二级引证文献(6)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
PCA
RBF神经网络
故障监测与诊断
石化装置
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
燕山大学学报
双月刊
1007-791X
13-1219/N
大16开
河北省秦皇岛市河北大街西段438号
18-73
1963
chi
出版文献量(篇)
2254
总下载数(次)
2
总被引数(次)
12529
论文1v1指导