基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
贝叶斯在训练样本不完备的情况下,对未知类别新增训练集进行增量学习时,会将分类错误的训练样本过早地加入到分类器中而降低其性能,另外增量学习采用固定的置信度评估参数会使其效率低下,泛化性能不稳定.为解决上述问题,提出一种动态置信度的序列选择增量学习方法.首先,在现有的分类器基础上选出分类正确的文本组成新增训练子集.其次,利用置信度动态监控分类器性能来对新增训练子集进行批量实例选择.最后,通过选择合理的学习序列来强化完备数据的积极影响,弱化噪声数据的消极影响,并实现对测试文本的分类.实验结果表明,本文提出的方法在有效提高分类精度的同时也能明显改善增量学习效率.
推荐文章
一种新的SVM多层增量学习方法HISVML
支持向量机
增量学习
关键词学习
文本分类
基于置信度策略选择的实时目标跟踪方法
目标跟踪
颜色属性
协作模型
置信度策略
支持向量机增量学习方法及应用
支持向量机
增量学习
学习精度
学习速度
多层克隆选择的排序学习方法研究
克隆选择
排序学习
排序函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 动态置信度的序列选择增量学习方法
来源期刊 计算机系统应用 学科
关键词 贝叶斯分类器 增量学习 置信度 序列选择
年,卷(期) 2016,(2) 所属期刊栏目 软件技术·算法
研究方向 页码范围 135-140
页数 6页 分类号
字数 4872字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭艳兵 烽火通信科技股份有限公司研发部 19 71 5.0 7.0
2 廖闻剑 烽火通信科技股份有限公司研发部 7 34 3.0 5.0
3 李念 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (122)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(6)
  • 参考文献(3)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯分类器
增量学习
置信度
序列选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导