基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于样本分布的极限学习机预测模型WELMSD.该模型先用kN近邻密度估计方法估计出样本的密度值,再用估计出的密度值给传统ELM的经验风险项加权,克服传统ELM在对时间序列进行预测时忽略样本分布的缺点.基于Rossler混沌时间序列和上证、深证股票数据的实验仿真结果证明了所提算法的有效性,且当近邻参数kN取值较小时,所提模型对参数不敏感,是一种更优的多变量时间序列预测模型.
推荐文章
采用优化极限学习机的多变量混沌时间序列预测
极限学习机
多变量时间序列
混沌序列预测
复合混沌优化
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
基于奇异值分解的极限学习机多变量时间序列预测模型
多变量时间序列
预测模型
极限学习机
奇异值分解
基于极端学习机的多变量混沌时间序列预测
混沌时间序列预测
输入变量选择
极端学习机
模型选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 加权极限学习机的多变量时间序列预测方法
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 加权极限学习机 多变量时间序列 预测 kN近邻密度估计
年,卷(期) 2016,(3) 所属期刊栏目
研究方向 页码范围 437-442
页数 6页 分类号 TP311
字数 3660字 语种 中文
DOI 10.7631/issn.1000-2243.2016.03.0437
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈晓云 福州大学数学与计算机科学学院 76 590 13.0 21.0
2 叶秋生 福州大学数学与计算机科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (56)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
加权极限学习机
多变量时间序列
预测
kN近邻密度估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
总被引数(次)
24665
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导