基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
合成孔径雷达( SAR)目标分类是自动目标识别系统的核心功能之一,对于战场监视等应用具有重要意义。利用SAR图像局部散射明显的特点,提出了通过训练样本的非负矩阵分解获得低维数局部特征编码,并以该编码作为字典进行稀疏表示分类的方法。采用Gotcha项目民用车辆目标的实测数据进行了验证,结果显示在不同信噪比条件下该方法的分类正确率均优于广泛采用的由降采样、随机投影、主成分分析提取低维数特征的稀疏表示分类方法,表明了该方法的性能优势。另外,还通过实验对比分析了非负约束的稀疏表示与标准稀疏表示在分类性能上的差别,结果显示非负约束的稀疏表示导致分类正确率下降,故针对分类问题不宜在稀疏表示时进行非负约束。
推荐文章
用于独立特征学习的稀疏非负矩阵分解算法
非负矩阵分解
L2,1/2稀疏
独立特征学习
余弦相似性
非负矩阵分解特征提取技术的研究进展
模式识别
非负矩阵分解
图像特征提取
稀疏表示
基于稀疏性非负矩阵分解的故障监测方法
故障监测
非负矩阵分解
主元分析
稀疏编码
统计过程监控
基于稀疏非负TT分解的图像分类算法
Tensor Train分解
交替非负最小二乘法
非负张量分解
稀疏性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 以非负矩阵分解提取局部特征的SAR目标稀疏表示分类
来源期刊 电讯技术 学科 工学
关键词 合成孔径雷达 稀疏表示 目标分类 非负矩阵分解 局部特征提取
年,卷(期) 2016,(5) 所属期刊栏目
研究方向 页码范围 495-500
页数 6页 分类号 TN959.1
字数 4474字 语种 中文
DOI 10.3969/j.issn.1001-893x.2016.05.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 雷宏 中国科学院电子学研究所 52 263 9.0 13.0
2 张之光 中国科学院电子学研究所 4 30 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (34)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (14)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(10)
  • 引证文献(0)
  • 二级引证文献(10)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
合成孔径雷达
稀疏表示
目标分类
非负矩阵分解
局部特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电讯技术
月刊
1001-893X
51-1267/TN
大16开
成都市营康西路85号
62-39
1958
chi
出版文献量(篇)
5911
总下载数(次)
21
总被引数(次)
28744
论文1v1指导