原文服务方: 计算机应用研究       
摘要:
为了提高图像分类准确率,提出了一种基于低秩表示的非负张量分解算法。作为压缩感知理论的推广和发展,低秩表示将矩阵的秩作为一种稀疏测度,由于矩阵的秩反映了矩阵的固有特性,所以低秩表示能有效地分析和处理矩阵数据,把低秩表示引入到张量模型中,即引入到非负张量分解算法中,进一步扩展非负张量分解算法。实验结果表明,所提算法与其他相关算法相比,分类结果较好。
推荐文章
低秩张量分解的多视角谱聚类算法
多视角谱聚类
张量
截断核范数
非负张量分解的快速算法
非负张量分解
非负矩阵分解
快速算法
采样
插值
重构
低秩Toeplitz张量的高精度随机填充算法
张量填充
低秩Toeplitz张量
随机算法
基于约束低秩表示模型的联合半监督分类算法
低秩表示
约束矩阵
约束的低秩表示
半监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于低秩表示的非负张量分解算法
来源期刊 计算机应用研究 学科
关键词 图像分类 低秩表示 非负 张量分解
年,卷(期) 2016,(1) 所属期刊栏目 图形图像技术
研究方向 页码范围 300-303
页数 4页 分类号 TP391.4|TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2016.01.069
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗斌 安徽大学计算机科学与技术学院 181 1213 16.0 25.0
2 刘亚楠 合肥师范学院计算机学院 9 29 4.0 5.0
3 刘路路 合肥师范学院计算机学院 18 48 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1966(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分类
低秩表示
非负
张量分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导