原文服务方: 西安交通大学学报       
摘要:
针对传统多视角学习算法只关注从多视角中提取共享信息而忽略了各视角的特有信息和高阶关联的问题,提出了一种基于截断核范数的低秩张量分解的多视角谱聚类算法.计算各视角的样本相似度矩阵和转移概率矩阵,构建一个包含各视角马尔可夫转移概率矩阵的张量,从而保留各个视角的信息.采用基于张量奇异值分解的截断核范数约束目标张量的秩.通过最小化张量截断核范数,学习到一个既包含各个视角共享信息又具有高阶关联的张量.利用迭代最优化算法求解目标函数,将求得的目标张量输入谱聚类算法得到聚类结果.在4个不同类型数据集上进行实验并与传统聚类算法进行了对比,结果表明:所提算法在4个数据集上的标准互信息度量值比标准谱聚类算法的分别提高了7.9%、24.9%、29.5%、8.1%,比LT-MSC算法的分别提高了3.4%、18.1%、17.6%、6.6%.通过对非负平衡参数在0.000 1~100之间的测试发现,所提算法表现基本稳定,在非负平衡参数取0.1~1之间表现良好.与传统多视角聚类算法相比,所提算法可有效增强各视角之间的互补性和高阶关联,并且具有良好的准确性和鲁棒性.
推荐文章
基于低秩表示的非负张量分解算法
图像分类
低秩表示
非负
张量分解
低秩Toeplitz张量的高精度随机填充算法
张量填充
低秩Toeplitz张量
随机算法
基于ε-邻域和拉普拉斯矩阵秩约束的谱聚类算法
谱聚类算法
ε-邻域
秩约束
l2,1范数
拉普拉斯矩阵
图优化的低秩双随机分解聚类
低秩双随机矩阵分解
图优化
稳定性
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 低秩张量分解的多视角谱聚类算法
来源期刊 西安交通大学学报 学科
关键词 多视角谱聚类 张量 截断核范数
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 119-125,133
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.7652/xjtuxb202003015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李晨 西安交通大学软件学院 47 175 7.0 11.0
2 张茁涵 西安交通大学软件学院 2 0 0.0 0.0
3 曹容玮 西安交通大学软件学院 2 0 0.0 0.0
4 郝问裕 西安交通大学软件学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (11)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多视角谱聚类
张量
截断核范数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
论文1v1指导